- Big
data architecture is different from traditional data for several key reasons,
including:
- Big data architecture starts with the data itself, taking a bottom-up approach. Decisions about data influence decisions about components that use data.
- Big data introduces new data sources such as social media content and streaming data.
- The enterprise data warehouse (EDW) becomes a source for big data.
- Master data management (MDM) is used as an index to content in big data about the people, places, and things the organization cares about.
- The variety of big data and unstructured data requires a new type of persistence.
- Many data architects have no experience with big data and feel overwhelmed by the number of options available to them (including vendor options, storage options, etc.). They often have little to no comfort with new big data management technologies.
- If
organizations do not architect for big data, there are a couple of main risks:
- The existing data architecture is unable to handle big data, which will eventually result in a failure that could compromise the entire data environment.
- Solutions will be selected in an ad hoc manner, which can cause incompatibility issues down the road.
Our Advice
Critical Insight
- Before beginning to make technology decisions regarding the big data architecture, make sure a strategy is in place to document architecture principles and guidelines, the organization’s big data business pattern, and high-level functional and quality of service requirements.
- The big data business pattern can be used to determine what data sources should be used in your architecture, which will then dictate the data integration capabilities required. By documenting current technologies, and determining what technologies are required, you can uncover gaps to be addressed in an implementation plan.
- Once you have identified and filled technology gaps, perform an architectural walkthrough to pull decisions and gaps together and provide a fuller picture. After the architectural walkthrough, fill in any uncovered gaps. A proof-of-technology project can be started as soon as you have evaluation copies (or OSS) products and at least one person who understands the technology.
Impact and Result
- Save time and energy trying to fix incompatibilities between technology and data.
- Allow the Data Architect to respond to big data requests from the business more quickly.
- Provide the organization with valuable insights through the analytics and visualization technologies that are integrated with the other building blocks.